Scalable FPGA Implementation of Dynamic Programming for Optimal Control of Hybrid Electrical Vehicles

Frans Skarman, Oscar Gustafsson

Linköping University

Dynamic programming is not fast enough on CPUs

Dynamic programming is not fast enough on CPUs

A scalable FPGA architecture that makes real-time use possible

The dynamic programming algorithm

• 5.12 km Search horizon with 10 m steps

• 5.12 km Search horizon with 10 m steps

States

- 30 velocity steps
- 30 State of Charge (SOC) steps

• 5.12 km Search horizon with 10 m steps

States

- 30 velocity steps
- 30 State of Charge (SOC) steps

Inputs

- 30 steps of electric torque
- 30 steps of conbustion torque
- 6 gears

pprox 2 seconds for real time

pprox 2 seconds for real time

> 1 model execution every clock cycle

Vehicle Model

Vehicle Model

C++ model converted with HLS

Pipelined with Initiation Interval = 1

• 2D linear interpolation

- 2D linear interpolation
- Requires 4 memory accesses per value

- 2D linear interpolation
- Requires 4 memory accesses per value
- Simultaneous writeback is required

Memory Read Partitioning

Memory Read Partitioning

- 4 separate memories
- x, y evenness determines indexing

Memory Write Partitioning

11

Schedule and Performance

Schedule and Performance

- Implemented in Spade HDL Implemented
- Tools:
 - Vitis HLS 2022.1
 - Vivado 2022.1
 - AMD Virtex UltraScale+ xcvu13pfhga2104-3-e

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	34 imes	21384	1030	476	154
4	335	$6.220\cdot 10^8$	1.85	$68 \times$	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	$87 \times$	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	34 imes	21384	1030	476	154
4	335	$6.220 \cdot 10^8$	1.85	$68 \times$	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	87 imes	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	34 imes	21384	1030	476	154
4	335	$6.220\cdot 10^8$	1.85	68 imes	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	87 imes	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	$34 \times$	21384	1030	476	154
4	335	$6.220\cdot 10^8$	1.85	68 imes	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	87 imes	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

Single threaded Xeon W-1250: **126 seconds**

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	$34 \times$	21384	1030	476	154
4	335	$6.220\cdot 10^8$	1.85	$68 \times$	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	$87 \times$	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

Single threaded Xeon W-1250: **126 seconds**

EUs	$f_{ m max}$ (MHz)	CCs required	Run time (s)	Speedup	CLB	DSP	BRAM	URAM
1	370	$2.488\cdot 10^9$	6.73	$18 \times$	10196	515	238	154
2	336	$1.244\cdot 10^9$	3.70	34 imes	21384	1030	476	154
4	335	$6.220 \cdot 10^8$	1.85	$68 \times$	41654	2060	952	154
6	288	$4.147\cdot 10^8$	1.44	87 imes	62627	3090	1428	154
9	272	$2.764\cdot 10^8$	1.02	$123 \times$	94874	4635	2142	154

- CLB, DSP, BRAM increase linearly
- URAM only stores final cost-to-go map
- Vehicle model dominates resource usage and f_{max}

Conclusions & Contributions

- Scalable architecture for hybrid electric vehicle optimization
- Enabling **real-time** use
- $> 100 \times speedup$ over CPU implementation

frans.skarman@liu.se

