
Scalable FPGA Implementation of
Dynamic Programming for Optimal
Control of Hybrid Electrical Vehicles

Frans Skarman, Oscar Gustafsson

Linköping University



Determine optimal split
between electric motor and
combustion engine

2



Determine optimal split
between electric motor and
combustion engine

2



Determine optimal split
between electric motor and
combustion engine

2



Determine optimal split
between electric motor and
combustion engine

2



Determine optimal split
between electric motor and
combustion engine

2



Determine optimal split
between electric motor and
combustion engine

Dynamic programming is not
fast enough on CPUs

2



Determine optimal split
between electric motor and
combustion engine

Dynamic programming is not
fast enough on CPUs

A scalable FPGA architecture
that makes real-time use
possible

2



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

3



The dynamic programming algorithm

4



The dynamic programming algorithm

4



The dynamic programming algorithm

4



The dynamic programming algorithm

4



Compute Requirements
• 5.12 km Search horizon with 10 m steps

5



Compute Requirements
• 5.12 km Search horizon with 10 m steps

States

• 30 velocity steps
• 30 State of Charge (SOC) steps

5



Compute Requirements
• 5.12 km Search horizon with 10 m steps

States

• 30 velocity steps
• 30 State of Charge (SOC) steps

Inputs

• 30 steps of electric torque
• 30 steps of conbustion torque
• 6 gears

5



Compute Requirements

Distance Steps

States

Inputs

Model evaluations

512 × 30 × 30 × 30 × 30 × 6 ≈ 2.4 billion

6



Compute Requirements

Distance Steps

States

Inputs

Model evaluations

512 × 30 × 30 × 30 × 30 × 6 ≈ 2.4 billion

≈ 2 seconds for real time

6



Compute Requirements

Distance Steps

States

Inputs

Model evaluations

512 × 30 × 30 × 30 × 30 × 6 ≈ 2.4 billion

≈ 2 seconds for real time

> 1 model execution every clock cycle

6



Vehicle Model

State

Input
“Disturbance”

Next state

Input cost

𝑚(𝑥𝑘, 𝑈𝑘, 𝑤𝑘) → 𝑥𝑘+1, 𝑐input

7



Vehicle Model

State

Input
“Disturbance”

Next state

Input cost

𝑚(𝑥𝑘, 𝑈𝑘, 𝑤𝑘) → 𝑥𝑘+1, 𝑐input

C++ model converted with HLS

Pipelined with Initiation Interval = 1

7



Interpolation

8



Interpolation

8



Interpolation

8



Interpolation

9



Interpolation
• 2D linear interpolation

9



Interpolation
• 2D linear interpolation
• Requires 4 memory accesses per

value

9



Interpolation
• 2D linear interpolation
• Requires 4 memory accesses per

value
• Simultaneous writeback is

required

9



Memory Read Partitioning

10



Memory Read Partitioning

• 4 separate memories
• x, y evenness determines indexing

10



Memory Write Partitioning

11



Architecture Overview

12



Architecture Overview

12



Architecture Overview

12



Architecture Overview

12



Architecture Overview

12



Schedule and Performance

Distance steps

Inputs

States

Exeuction units

Interpolation latency
Model latency

Clock cycles

𝑁 (𝑈 ⋅ ⌈
𝑆
𝑃
⌉ + 𝑃 + 𝐼 − 1) +𝐷 = 𝐶

13



Schedule and Performance

Distance steps

Inputs

States

Exeuction units

Interpolation latency
Model latency

Clock cycles

512 (5400 ⋅ ⌈
900
4
⌉ + 4 + 10 − 1) + 894 = 6.220 ⋅ 108

14



Resource Usage and Runtime
• Implemented in Spade HDL 
• Tools:

• Vitis HLS 2022.1
• Vivado 2022.1
• AMD Virtex UltraScale+ xcvu13pfhga2104-3-e

15



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

16



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

16



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

16



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

Single threaded Xeon W-1250: 126 seconds

16



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

Single threaded Xeon W-1250: 126 seconds

16



Resource Usage and Runtime
EUs 𝑓max (MHz) CCs required Run time (s) Speedup CLB DSP BRAM URAM
1 370 2.488 ⋅ 109 6.73 18 × 10196 515 238 154
2 336 1.244 ⋅ 109 3.70 34 × 21384 1030 476 154
4 335 6.220 ⋅ 108 1.85 68 × 41654 2060 952 154
6 288 4.147 ⋅ 108 1.44 87 × 62627 3090 1428 154
9 272 2.764 ⋅ 108 1.02 123 × 94874 4635 2142 154

• CLB, DSP, BRAM increase linearly
• URAM only stores final cost-to-go map
• Vehicle model dominates resource usage and 𝑓max

16



Conclusions & Contributions

• Scalable architecture for hybrid electric vehicle optimization
• Enabling real-time use
• > 𝟏𝟎𝟎 × speedup over CPU implementation

frans.skarman@liu.se

17

frans.skarman@liu.se
frans.skarman@liu.se

	
	
	
	
	
	
	
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	The dynamic programming algorithm
	Compute Requirements
	Compute Requirements
	Compute Requirements
	Compute Requirements
	Compute Requirements
	Compute Requirements
	Vehicle Model
	Vehicle Model
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Interpolation
	Memory Read Partitioning
	Memory Read Partitioning
	Memory Write Partitioning
	Architecture Overview
	Architecture Overview
	Architecture Overview
	Architecture Overview
	Architecture Overview
	Schedule and Performance
	Schedule and Performance
	Resource Usage and Runtime
	Resource Usage and Runtime
	Resource Usage and Runtime
	Resource Usage and Runtime
	Resource Usage and Runtime
	Resource Usage and Runtime
	Resource Usage and Runtime
	Conclusions & Contributions

